

Performance Characteristics

- RF/LO frequency range: 30GHz~66GHz
- IF frequency range: DC~8GHz
- Conversion loss: 8dB
- Image Rejection Ratio : 25dBc
- Input 1dB compression point: 15dBm
- LO-RF isolation: 40dB
- LO-IF isolation: 35dB
- RF-IF isolation: 35dB
- Local oscillator power: 16dBm
- Chip size: 1.15mm x 1.60mm x 0.07mm

Product Introduction

 $RF \longrightarrow 0 ISO$

Functional Block Diagram

The chip integrates two passive double balanced mixers and a 90 ° orthogonal bridge. The 1/Q ports of the product output intermediate frequency signals with the same amplitude and a phase difference of 90 °. By using a low-frequency orthogonal coupler outside the chip, the product's image suppression function can be achieved. The chip is manufactured using GaAs Schottky diode technology and grounded through a back through-hole, without the need for additional grounding measures. This chip is mainly used in microwave transceiver frequency conversion components, QPSK modulators, microwave frequency and phase detectors, etc.

Microwave electrical parameters (TA = +25 $^{\circ}$ C, f_{IF} =100MHz, PLO=+16dBm, 50 Ω system)

Parameters	Symbol	Min	Тур	Max	Unit
LO Frequency Range	LO		30-66		GHz
RF Frequency Range	RF		30-66		GHz
IF Frequency Range	IF	-	0.01-8		GHz
Conversion Loss	IL	-	10	12	dB
Image Rejection Ratio	IMR	15	25	35	dBc
Isolation from Local Oscillator to RF	ISO(L-R)	30	40	1 - 1	dB
Isolation from Local Oscillator to IF	ISO(L-I)	15	25	1.5	dB
RF to IF Isolation	ISO(R-I)	15	35		dB
Input IdB Compression Point	P-1(in)	-	+15		dBm

Note:

1) All chips have undergone 100% microwave testing on chip;

2) Unless otherwise specified, the above parameters were measured in the upper sideband signal down conversion mode, with an intermediate frequency of 100MHz and a local oscillator power of +16dBm.

3) For the intermodulation and spurious indicators of interest frequency points, you can contact our company for testing.

Use Restriction Parameters

Parameters	Symbol	Limit value	
Max Port Input Power	P_{in}	24 dBm	
Max IF Input Current	IIF	±2 mA	
Storage Temperature	T_{stg}	-65℃~+150℃	
Max Channel Temperature	T_{ch}	+175℃	

Suggested Operating Conditions

Parameters	Symbol	Limit value
Local Oscillator Driving Powe	er P _{LO}	15 dBm \sim 18dBm
RF input power	P_{RF}	≤7dBm
Operating Temperature Rang	e T _A	-55℃~+125℃

Typical Curve

Variable Frequency Loss vs. RF Frequency

Down Conversion Mirror Suppression System vs. RF Frequency

Outline Dimensions and Pressure Point Arrangement Diagram

Note: The units in the figure are all micrometers (μ rn); The tolerance of the external dimensions is ± 100 μ m.

Pressure point arrangement diagram

No.	Symbol	Function	Dimensions
Ι	RF	RF input pressure point	100×100µm²
4	LO	Local oscillator input pressure po	int 100×100µm²
2, 5	IF 1	Intermediate frequency IF1 output	100×100µm ²
3, 6	IF2	Intermediate frequency IF2 output	100×100µm ²

No.	Symbol	Function	Port Description	Port Equivalent Circuit Diag
1	RF	RF input terminal	AC coupling, impedance 50 ohms	RFo
2	LO	Local oscillator input terminal	DC short circuit, impedance 50 ohms	
3	IF1/IF2	If output terminal	DC coupling, impedance of 50 ohms. It is prohibited to use a digital multimeter in the ohm range to measure the impedance of the intermediate frequency port.	IF O
4	GND	Grounding terminal	Connecting the back metal through the dielectric through-hole	GND

GX-3066-0008 GaAs MMIC I/Q Mixer chip

Suggested Assembly Diagram

Note: The bonding wire should be as short as possible, not longer than 500 μ m. When the bonding wire is too long, it is recommended to use double wire bonding. When the substrate thickness exceeds 200 μ m, it is recommended to place aluminum copper pads of appropriate thickness underneath the chip.

Note:

1) Single chip circuits need to be stored in a dry and clean N₂ environment;

2) There is no insulation protection layer on the surface of the chip, so attention should be paid to the cleanliness of the assembly environment to avoid excessive surface contamination;

3) The thermal expansion coefficient of the carrier should be close to that of 6H SiC, with a linear thermal expansion coefficient of 4.2xl0-6/°C. It is recommended to use CuMoCu, CuMo, or CuW as the carrier material;

4) During assembly, holes should be avoided between the chip and the carrier, while ensuring good heat dissipation between the box and the carrier;

5) Suggest sintering with gold tin solder, Au: Sn=80%: 20%, sintering temperature not exceeding 300°C, time not longer than 30 seconds. The sintering process should avoid rapid temperature changes and gradually increase and decrease the temperature;

6) It is recommended to use gold wire with a diameter of 25μ m $\sim 30 \mu$ m, with a bonding table chassis temperature not exceeding 250° C, a bonding time as short as possible, and a bonding process that avoids rapid temperature changes; 7) During the use and assembly of chips, attention should be paid to anti-static measures. Grounding and anti-static soldering should be worn, and the sintering and bonding stations should be well grounded;

8) We can provide various types of tube and shell packaging products;

9) Please contact the supplier if you have any questions.

This product is sensitive to static electricity, please pay attention to anti-static measures during use