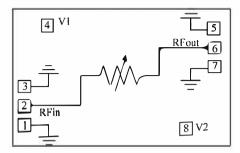


GaAs MMIC Voltage Variable Attenuator Chip


Performance Characteristics

• Frequency range: 30GHz~75GHz

Insertion loss: 2dBAttenuation: 1-30dB

On state input/output standing wave: 1.4/1.4
Chip size: 1.40 mmx0.85 mmx0.07 mm

Functional Block Diagram

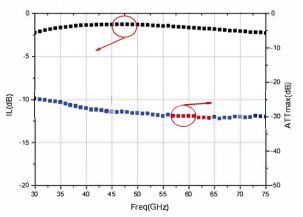
Product Introduction

The chip operates at frequencies ranging from 30GHz to 75GHz, with an insertion loss of less than 2.3dB and an attenuation range of 1-30dB. It integrates a power on network on-chip and has a conversion time of less than 20ns.

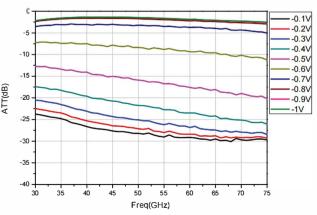
Microwave Electrical Parameters ($T_A = +25^{\circ}C$, Vt=-5 V ~OV)

Index	Symbol	Min	Тур	Max	Unit
Frequency Range	f		30~75		GHz
Insertion Loss	IL		2	2.3	dB
Attenuation	ATT	22	1-30		dB
On State Input Standing Wave	VSWRin		1.4	1.7	-
On State Output Standing Wave	VSWRout		1.4	1.7	-

Note: 1) Either V1 or V2 can be powered on, and different attenuation states can be achieved by controlling the magnitude of the power.

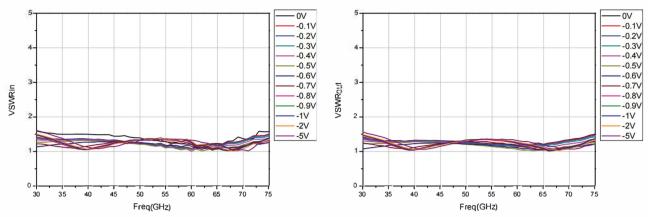

Use Restriction Parameters

Parameters	Limit Value		
Control Voltage Range	-10~0V		
Storage Temperature	-65℃~+150℃		
Operating Temperature	-55°C∼+125°C		

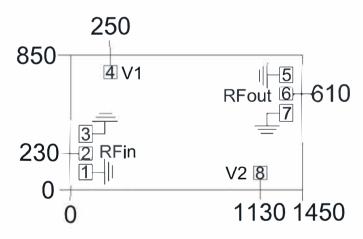

Typical Curve(T_A=+25°C, Vt=-5 V ~OV)

In order to provide users with a more intuitive understanding of the performance indicators of the chip, the following are curve graphs for each indicator.

Insertion Loss (-5V)/Max Attenuation Value (0V) VS Frequency



Attenuation Value (-0.1V --1V, interval 0.1V) VS Fequency


Different Attenuation States Input Standing Wave VS Frequency Different Attenuation States Output Standing Wave VS Frequency

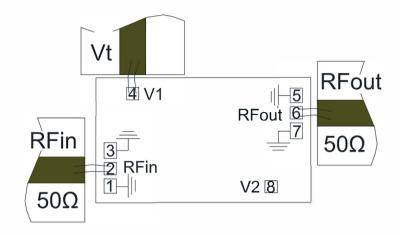
Truth Table

Chip	V1/V2	RFin-RFout		
All	-5V	ON: Insertion loss state		
	0V C	FF: Max attenuation state		

Outline Dimensions and Pressure Point Arrangement Diagram

Note: The units in the figure are all micrometers (μ m); The tolerance of the external dimensions is \pm 100 μ m.

Pressure Point Arrangement Diagram


No. Symbo			Dimensions μm×μm	Coordinate	
	Symbol	Function		X	Y
				μm	μm
2	RFin	RF signal input terminal	80×80	100	230
6	RFout	RF signal output terminal	80×80	1300	610
8	V1	Power terminal	80×80	250	750
4	V2	Power terminal	80×80	1130	100
1, 3, 5, 7	GND	Grounding point (for probe testing on	y) 80×100	8 4 8	7/41

Note: 1. Taking the bottom left corner of the chip as the origin, the horizontal direction is the x-axis, and the vertical direction is the y-axis.

^{2.} Either of the bonding areas 4 and 8 with the same function can be used.

GaAsMMIC Voltage Variable Attenuator Chip

Suggested Assembly Diagram

Note:

- 1) Assemble and use in a purified environment;
- 2) GaAs material is very brittle and the chip surface is easily damaged (do not touch the surface), so caution must be taken when using it;
- 3) Use 1-2 bonding wires (25 μm diameter gold wire) for input and output, with bonding wires as short as possible and not larger than 250 μm;
- 4) The back of the chip must be grounded;
- 5) Use 80/20 gold tin sintering, with a sintering temperature not exceeding 300°C and a sintering time as short as possible, not exceeding 30 seconds;
- 6) This product belongs to electrostatic sensitive devices, please pay attention to anti-static measures during storage and use;
- 7) Dry and nitrogen storage environment;
- 8) Do not attempt to clean the surface of the chip using dry or wet chemical methods;
- 9) During use, Vt can be selected as Y1 or Y2, choose one from the two;
- 10) Please contact the supplier if you have any questions.

This product is sensitive to static electricity, please pay attention to anti-static measures during use.